Send Message
Home ProductsWater Quality Sensor

Support RS-485 Online Turbidity Sensor Anti Interference

Support RS-485 Online Turbidity Sensor Anti Interference

  • Support RS-485 Online Turbidity Sensor Anti Interference
Support RS-485 Online Turbidity Sensor Anti Interference
Product Details:
Place of Origin: CHINA
Brand Name: kacise
Certification: CE
Model Number: KTU310
Payment & Shipping Terms:
Minimum Order Quantity: 0-100
Price: $0-$2000
Packaging Details: Common package or custom package
Delivery Time: 3-10days
Payment Terms: L/C, D/A, D/P, T/T, Western Union, MoneyGram
Supply Ability: 100
Contact Now
Detailed Product Description
Measuring Principle: Scattering Method Range: 0 ~ 100 NTU
Resolution: 0.1 NTU, 0.1 °C Precision: ± 3% Or ± 2 NTU ± 0.5 °C
Calibration Mode: Two-point Calibration Temperature Compensation: Automatic Temperature Compensation (PT1000)
High Light:

Support RS-485 Online Turbidity Sensor

,

RTU Protocol Online Turbidity Sensor

Scattering Method Online Turbidity Sensor Anti Interference

KTU310 Online Turbidity Sensor 90 ° Angle Scattering Principle Fiber Structure, Strong Anti-Interference Ability

1.Principle

The KTU310 integrated on-line turbidimeter is designed and made by the principle of scattering light turbidimeter. When a beam of light enters a water sample, the light is scattered by the turbidity material in the water sample. The turbidity in the water sample can be calculated by measuring the intensity of the scattered light in the vertical direction of the incident light and comparing it with the internal calibration value, the final value is output after linearization.

2.Feature

90 ° angle scattering principle, built-in temperature sensor

Support RS-485, Modbus/RTU protocol

Fiber structure, strong anti-interference ability of external light

Infrared LED light source, high stability

IP68, shield, water depth, 20 meters

Convenient, fast, stable and easy to maintain

3.Technical Specifications

Model number KTU310
Measuring principle Scattering method
Range 0 ~ 100 NTU
Resolution 0.1 NTU, 0.1 °C
Precision

± 3% or ± 2 NTU

± 0.5 °C

Calibration mode Two-point calibration
Temperature compensation Automatic temperature compensation (PT1000)
Output mode RS-485(Modbus/RTU)
Working conditions 0ー50 °C, < 0.2 mpa
Storage temperature - 5 ~ 65 °C
Installation mode Immersion mounting, 3/4 NPT thread
Power consumption < 0.05 W
Power supply 12 ~ 24 VDC ± 10%
Protection level IP68
 

 

4.Dimensional Drawing

Support RS-485 Online Turbidity Sensor Anti Interference 0

5.Installation

 

Support RS-485 Online Turbidity Sensor Anti Interference 1

Installation distance: 5 cm above the side wall and 10 cm above the bottom.

Tips:Measurement

 

Turbid creek water caused by heavy rains.
The most widely used measurement unit for turbidity is the Formazin Turbidity Unit (FTU). ISO refers to its units as FNU (Formazin Nephelometric Units). ISO 7027 provides the method in water quality for the determination of turbidity. It is used to determine the concentration of suspended particles in a sample of water by measuring the incident light scattered at right angles from the sample. The scattered light is captured by a photodiode, which produces an electronic signal that is converted to a turbidity. Open source hardware has been developed following the ISO 7027 method to measure turbidity reliably using an Arduino microcontroller and inexpensive LEDs.
There are several practical ways of checking water quality, the most direct being some measure of attenuation (that is, reduction in strength) of light as it passes through a sample column of water.The alternatively used Jackson Candle method (units: Jackson Turbidity Unit or JTU) is essentially the inverse measure of the length of a column of water needed to completely obscure a candle flame viewed through it. The more water needed (the longer the water column), the clearer the water. Of course water alone produces some attenuation, and any substances dissolved in the water that produce color can attenuate some wavelengths. Modern instruments do not use candles, but this approach of attenuation of a light beam through a column of water should be calibrated and reported in JTUs.
The propensity of particles to scatter a light beam focused on them is now considered a more meaningful measure of turbidity in water. Turbidity measured this way uses an instrument called a nephelometer with the detector set up to the side of the light beam. More light reaches the detector if there are many small particles scattering the source beam than if there are few. The units of turbidity from a calibrated nephelometer are called Nephelometric Turbidity Units (NTU). To some extent, how much light reflects for a given amount of particulates is dependent upon properties of the particles like their shape, color, and reflectivity. For this reason (and the reason that heavier particles settle quickly and do not contribute to a turbidity reading), a correlation between turbidity and total suspended solids (TSS) is somewhat unusual for each location or situation.
Turbidity in lakes, reservoirs, channels, and the ocean can be measured using a Secchi disk. This black and white disk is lowered into the water until it can no longer be seen; the depth (Secchi depth) is then recorded as a measure of the transparency of the water (inversely related to turbidity). The Secchi disk has the advantages of integrating turbidity over depth (where variable turbidity layers are present), being quick and easy to use, and inexpensive. It can provide a rough indication of the depth of the euphotic zone with a 3-fold division of the Secchi depth, however this cannot be used in shallow waters where the disk can still be seen on the bottom.
An additional device, which may help measuring turbidity in shallow waters is the turbidity tube. The turbidity tube condenses water in a graded tube which allows determination of turbidity based on a contrast disk in its bottom, being analogous to the Secchi disk.
Turbidity in air, which causes solar attenuation, is used as a measure of pollution. To model the attenuation of beam irradiance, several turbidity parameters have been introduced, including the Linke turbidity factor (TL).

 

Contact Details
Xi'an Kacise Optronics Co.,Ltd.

Contact Person: Ms. Evelyn Wang

Tel: +86 17719566736

Fax: 86--17719566736

Send your inquiry directly to us (0 / 3000)

Contact

Address: i City, No11, TangYan South road, Yanta District, Xi'an,Shaanxi,China.

Factory Address:i City, No11, TangYan South road, Yanta District, Xi'an,Shaanxi,China.